
AspectC++ Quick Reference

Syntax Overview

The AspectC++ syntax is an extension to the C++ syntax defined
in the ISO/IEC 14882:1998(E) standard.

class-head:
aspect identifieropt base-clauseopt

declaration:
pointcut-declaration
advice-declaration

member-declaration:
pointcut-declaration
advice-declaration

pointcut-declaration:
pointcut declaration

pointcut-expression:
constant-expression

advice-declaration:
advice pointcut-expression : declaration

Concepts

aspect
Aspects in AspectC++ implement in a modular way cross-
cutting concerns and are an extension to the class concept of
C++. Additionally to attributes and methods, aspects may
also contain advice declarations.

advice declaration
An advice declaration is used either to specify code that
should run when the join points specified by a pointcut ex-
pression are reached or to introduce a new method, attribute,
or type to all join points specified by a pointcut expression.

join point
In AspectC++ join points are defined as points in the com-
ponent code where aspects can interfere. A join point refers
to a method, an attribute, a type (class, struct, or union), an
object, or a point from which a join point is accessed.

pointcut
A pointcut is a set of join points described by a pointcut ex-
pression.

pointcut expression
Pointcut expressions are composed from match expressions
used to find a set of join points, from pointcut functions used
to filter or map specific join points from a pointcut, and from
algebraic operators used to combine pointcuts.

match expression
Match expressions are strings containing a search pattern.

Aspects

Writing aspects works very similar to writing C++ class defini-
tions.

aspect A { ... };
defines the aspect A

aspect A : public B { ... };
A inherits from class or aspect B

Advice Declarations

before(...)
the advice code is executed before the join points in the
pointcut

after(...)
the advice code is executed after the join points in the point-
cut

around(...)
the advice code is executed in place of the join points in the
pointcut

If the advice is not recognized as being of a predefined kind
(i.e. before, after, or around), it is regarded as an introduction of
a new method, attribute, or type to all join points in the pointcut.

thisJoinPoint
object of type JoinPoint to be used by advice code to obtain
more information about the current join point.

Pointcut Expressions

Type Matching

"int"
matches the C++ built-in scalar type int

"% *"
matches pointers to any class or named C++ data type

Namespace and Class Matching

"Chain"
matches the class, struct or union Chain

"Memory%"
matches any class, struct or union whose name starts with
“Memory”

Attribute Matching

"Chain* Chain::next"
matches the attribute next of class Chain having type Chain*
(pointer to Chain)

"% Chain::%"
matches any attribute of class Chain

Function Matching

"void reset()"
matches the function reset having no parameters and return-
ing void

"% printf(...)"
matches the function printf having any number of parame-
ters and returns any type

"void %(int,%)"
matches any function having exactly two parameters (from
which the first one must be int) and returning void

Predefined Pointcut Functions

Types

base(pointcut) N � NC � F

returns all base classes resp. redefined functions of classes in
the pointcut

derived(pointcut) N � NC � F

returns all classes in the pointcut and all classes derived from
them resp. all redefined functions of derived classes

Control Flow

cflow(pointcut) N � C

captures join points occuring in the dynamic execution con-
text of join points in the pointcut

Scope

within(pointcut) N � C

filters all join points that are within the functions† or classes
in the pointcut

Functions

call(pointcut) N � CC
‡‡

provides all join points where a named entity in the point-
cut is called. pointcut may contain function names or class
names. In the case of a class name all calls to functions of
that class are provided.

execution(pointcut) N � CE

provides all join points referring to the implementation of a
named entity in the pointcut. pointcut may contain function
names or class names. In the case of a class name all imple-
mentations of functions of that class are provided.

Attributes

set(pointcut)† N � CS

selects all join points where the value of an attribute or global
variable is modified‡

get(pointcut)† N � CG

selects all join points where the value of an attribute or global
variable is read‡

Context

that(type pattern) N � C

returns all join points where the current C++ this pointer
refers to an object which is an instance of a type that is com-
patible to the type described by the type pattern

target(type pattern) N � C

returns all join points where the target object of a call is an
instance of a type that is compatible to the type described by
the type pattern

result(type pattern)† N � C

returns all join points where the result object of a call is an
instance of a type that is compatible to the type described by
the type pattern

args(type pattern, ...) (N,...) � C

receives a list of type patterns and filters all methods or at-
tributes with a matching signature

Instead of the type pattern it is possible here to deliver the name
of a variable to which the context information is bound. In this
case the type of the variable is used for the type matching.

Algebraic Operators

pointcut && pointcut (N,N) � N, (C,C) � C

intersection of the join points in the pointcuts
pointcut || pointcut (N,N) � N, (C,C) � C

union of the join points in the pointcuts
! pointcut N � N, C � C

exclusion of the join points in the pointcut

JoinPoint-API

Types

Result
result type of a function

That
object type (object initiating a call)

Target
target object type (target object of a call)

Functions

static AC::Type type()
returns the encoded type for the join point conforming with
the C++ ABI V3 specification††

static int args()
returns the number of arguments of a function for call and
execution join points

static AC::Type argtype(int number)
returns the encoded type of an argument conforming with the
C++ ABI V3 specification††

static const char *signature()
gives a textual description of the join point (function name,
class name, ...)

static unsigned int id()
returns a unique numeric identifier for this join point

static AC::Type resulttype()
returns the encoded type of the result type conforming with
the C++ ABI V3 specification††

static AC::JPType jptype()
returns a unique identifier describing the type of the join
point

void *arg(int number)
returns a pointer to the memory position holding the argu-
ment value with index number

Result *result()
returns a pointer to the memory location designated for the
result value or 0 if the function has no result value

That *that()
returns a pointer to the object initiating a call or 0 if it is a
static method or a global function

Target *target()
returns a pointer to the object that is the target of a call or 0
if it is a static method or a global function

void proceed()†

executes the original join point code in an around advice
AC::Action &action()

returns the runtime action object containing the execution
environment to execute (trigger()) the original functionality
encapsulated by an around advice

Example

A reusable tracing aspect.

aspect Trace {
pointcut virtual functions() = 0;
advice execution(functions()) : around() {

cout << "before " << JoinPoint::signature() << "(";
for (unsigned i = 0; i < JoinPoint::args(); i++)

cout << (i ? ", " : "") << JoinPoint::argtype(i);
cout << ")" << endl;
thisJoinPoint->action().trigger();
cout << "after" << endl;

}
};

In a derived aspect the pointcut functions may be redefined to
apply the aspect to the desired set of functions.

aspect TraceMain : public Trace {
pointcut functions() = "% main(...)";

};

This is a reference sheet corresponding to AspectC++ 0.6.
Version 1.0, 5th February 2003.

(c) Copyright 2003 pure-systems GmbH
All rights reserved.

†not yet implemented in version 0.6
‡does not recognize access through C++ references or pointers
††http://www.codesourcery.com/cxx-abi/abi.html#mangling
‡‡C, CC, CE, CS, CG: Code (any, only Call, only Execution, only Set, only Get);
N, NN , NC , NF , NT : Names (any, only Namespace, only Class, only Function,
only Type)

